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Cost Analysis

%Statlstlcal Monograph

* Written over the past four years with Anduin
Touw (Boeing Corporation)

 |Inspired by David Lee’s “The Cost Analyst’s
Companion”

* Greater emphasis on statistical methods for
learning curves and CERs

* To be published by INFORMS, Topics In
Operations Research series, 2003




Questions | Have Been Asked

As A Book Author
»

« How many pages is your book?
180 pages

e OK, then, what's it about?

Statistical Methods for Learning Curves and
Cost Analysis

* Really, may | have a (free) copy?

No, but it will be priced very reasonably
(well under $50/copy, in paperback)

« Daddy, are you really smart enough to write a book?
No, David, I'm not 3



Statistical Problems In

%I\/Illltary Cost Analysis

e Marginal cost of a weapon system varies with:
— technical and performance characteristics
* e.g., weight, speed, materials content
— unit number In the production sequence
 “learning”

« Learning curve: relationship between cost and
seqguence number, holding fixed the technical
and performance characteristics

e Cost estimating relationship (CER): relationship
between cost and characteristics, holding fixed
the sequence number (e.g., 100t unit) \




Learning Curve versus CER:

%Two Perspectives
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Data on Sequential

%Productlon Lots

* We do not typically observe data on
iIndividual production units
* Instead, we observe data on “lots”

— typically annual lots, though a given lot may
span several fiscal years start-to-finish

Incremental Lot average

Lot number Lot start Lot end Lot size lot cost (M)  cost ($M)
1 1 218 218 102.765 0.471
2 219 1,158 940 212.158 0.226
3 1,159 3,200 2,042 321.819 0.158
4 3,201 5,900 2,700 333.720 0.124
5 5,901 7,591 1,691 212.558 0.126
6 7,592 10,011 2,420 227.238 0.094
7 10,012 11,668 1,657 157912 0.095
8 11,669 14,436 2,768 171.339 0.062




Learning Curve Estimation:

%Lot Midpoint Iteration

* Power-function model for marginal cost:
MC(Q) =T,” Q°, -1<b£0

 Incremental lot cost:

Tl
1+b

Q +0.5
TC, - TC., = (T, 2°dz =

Q.,+05

@ +05* - (@, +05")

e Lot average cost:

TC,-TC, _ T,
Qi - Qi-l (1+b), (Q. - Qi-l)

LAC, = @ +05) - (@, +05)*]
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Lot Midpoint Calculation

* Find the point interior to each lot whose
marginal cost equals the lot average cost
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Lot Midpoint Iteration

* By the definition of the lot midpoint:
LAC, = MC[Q(b)] = T," [Q(b)]", i=1K ,n

« Take natural logarithms:
In(LAC) = In(T) + bIn[Q(b)], i=1K ,n

 Alternate between these two steps,
until (hopefully) convergence

— Calculate the midpoint of each lot |
g — Run a linear regression on the midpoints, 2

forlots 1=1K ,n 9



Assessment of Lot Midpoint

%Iteratlon

» Lot-midpoint iteration has no theoretical
foundation
— There may not be a “root”
— Root may not be unique
— Iteration may not converge to any root

— Does not optimize any continuous function
« Maximize likelihood function
* Minimize sum-of-squares

« Better to use non-linear least squares (NLS)
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ouUliucliice valid 101 LUIc
NLS predictions, using lot
%midpoints as plot points
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Models with Multiplicative

%Error Structures

e The learning curve:
LAC. =T, Q°" (1+u)

or the CER:

Unitcost, = b~ Weight™* " (1+u,),
where Var (u)=s? forali=1K ,n
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Minimum Percentage Error
%(I\/IPE) Estimation

* Lee, Book have proposed to minimize the
sum of percentage errors:

.2
6 :argminé a/i } f(xl!b)g

b = f(x,b) g

— Estimates are biased, even in very large samples
— Estimates are sensitive to outliers

« Better to use iteratively reweighted least
squares (IRLS)
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Why MPE Is Biased:

%Two Perspectives
 If error terms are multiplicative normal,
then log-likelihood function looks like:

d@ 1, b) &
2& f(x.b) 5

— by dropping the additional term, you shift the
location of the maximum away from unbiased MLE

=~ + additiona term involving b

* The minimization algorithm is “tempted” to
minimize the sum of percentage errors by
inflating the denominator

— model predictions are biased high, particularly

model intercept y



Monte Carlo Results with

,n0rmally-distributed errors

N

Normal errors, T, = 1.8, b = -0.33 (80% slope), s = 0.15
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Sensitivity of Estimators
%to Outliers (t-distribution)

o t-distribution with 3 degrees-of-freedom,
normalized to have s = 0.15

» greater probability in the tails (u > 280" s)?
more outliers

N\
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Monte Carlo Results with
%t-distributed errors

N\

t-distributed errors, T, = 1.8, b = -0.33 (80% slope),
s =0.15
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Theoretical Comparison of
_Estimation Methods

Estimation Distributional  Asymptotic Software Covariance
Method Assumptions Properties Availability Matrix

Lot midpoint multiplicative

non-linear least model, log-

squares (NLS) normal errors

L ot-midpoint multiplicative manually in Excd, conventional
iteration model, log- programmablein formula, an

normal errors SAS underestimate

Minimum percentage Excel Solver;

error (MPE) programmablein
SAS

lteratively

reweighted

least squares

(IRLS)
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Convergence
.’%

« Consider the sequence b,b? b* K

» This sequence converges if |b/£1

-eg. 12,(12)°,(y2) K ®0

—or -12,(-92)°,(-Y2) K =-1/2,1/4,- /8K ® 0
* |t diverges if |o|>1

-eg, 222K @®¥

* Non-linear, multi-variate generalization:
iteration converges If all eigenvalues of Jacobian matrix

<1 Iin absolute value
20



